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Abstract. Motivated by recent experiments on large quantum dots, we consider the energy
spectrum in a system consisting ofN particles distributed amongK < N independent subsys-
tems, such that the energy of each subsystem is a quadratic function of the number of particles
residing on it. On a large scale, the ground-state energyE(N) of such a system grows quadrat-
ically with N , but in general there is no simple relation such asE(N) = aN + bN2. The
deviation ofE(N) from exact quadratic behaviour implies that its second difference (the inverse
compressibility)χN ≡ E(N + 1)− 2E(N)+E(N − 1) is a fluctuating quantity. Regarding the
numbersχN as values assumed by a certain random variableχ , we obtain a closed-form expres-
sion for its distributionF(χ). Its main feature is that the corresponding densityP(χ) = dF(χ)

dχ

has a maximum at the pointχ = 0. AsK →∞ the density is Poissonian, namely,P(χ)→ e−χ .

1. Motivation

Statistics of spectra is an efficient tool for elucidating properties of various physical systems.
So far, most of the effort has been focused on the study of energy levels of a system with
a fixed number of particles. In this context, one of the central earlier results is that the
spectral statistics of many-body systems such as complex nuclei agree with the predictions
of random matrix theory [1, 2]. On the other extreme, it was found that level statistics of a
single particle in a chaotic or disordered system also obeys a Wigner–Dyson statistics [3, 4].

Recently, experiments have been designed to obtain information on the statistics of the
addition spectraof electrons in quantum dots [5]. The pertinent energy levelsE(N) are
the ground-state energies of a system consisting ofN electrons residing on a quantum dot,
which is coupled capacitively to its environment.

Let us single out two properties of the addition spectra of quantum dots. The first one
is that, on a large scale, the energyE(N) grows quadratically withN , while the second
one is a consequence of charge quantization, namely, there is, in general, no simple relation
such asE(N) = aN + bN2. In this context, an appropriate quantity whose statistics is of
interest is then the inverse compressibility,

χN ≡ E(N + 1)− 2E(N)+ E(N − 1). (1)

It is the deviation ofE(N) from exact quadratic behaviour which makes its second difference
χN non-constant. Indeed, in a recent experiment on large quantum dots [6] it was found
that the inverse compressibility vanishes for numerous values of electron numberN .
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In this work we study the statistics of the addition spectrum of a simple physical
system with the two basic properties mentioned above. One example of such a system is
motivated by considering the electrostatic energy of large quantum dots (although it should
be mentioned that the model is too simple to describe the actual physics). To be specific,
we have in mind a system ofK metallic grains such that the number of electrons on theith
grain isni (i = 0, 1, 2, . . . , K − 1) and their total number isN . The electrostatic energy of
the pertinent system is a bilinear form in the numbersni with aK ×K matrixw ≡ 1

2C
−1.

HereC is a positive-definite symmetric matrix of capacitance and inductance coefficients. If
the metallic grains are very far apart, the matrixC is nearly diagonal. Thus, we concentrate
on the special caseC = diag[Ci ], for which the energy of the system is given by

E(N) = min
K−1∑
i=0

1

2Ci
n2
i

(
subject to

K−1∑
i=0

ni = N
)
. (2)

The minimum in (2) is taken over all possible partitionsni of N .
Another example is the energy of a system composed ofK different harmonic

oscillators, among which one distributesN spinless fermions. If there areni fermions
on oscillatori (whose frequency isωi), then the energy of this oscillator (up to a constant)
is Ei = h̄ωini(ni + 1), and hence the ground-state energy of the system is

E(N) = min
K−1∑
i=0

Ei

(
subject to

K−1∑
i=0

ni = N
)
. (3)

We will concentrate on the first example, which is borrowed from the electrostatics of
quantum dots (2), and refer to the constantsCi as capacitors. Some remarks pertaining to
the second example (the system of oscillators (3)) are also presented.

Regarding the numbersχN of (1) as values assumed by a certain random variable, the
distribution of this random variable is the main focus of this work, which culminates in
theorem 1, where we find a closed-form expression for the distribution.

The problem of elucidating the (addition) spectral statistics of aa many-bodysystem,
consisting of several independent subsystems (whose dependence ofE on ni is known),
looks deceptively simple. As will be evident shortly, this is not the case, and finding the
distribution in question is quite a non-trivial task. Note that, even for asingle-particle
systemcomposed of several independent subsystems (e.g. a system of a particle in several
boxes), the derivation of level statistics requires a large degree of mathematical effort [7].
The rest of the paper is therefore devoted to a rigorous derivation of our main results.

2. Formalism

Definition 1. Let (θn)∞n=1 be a sequence of real numbers andF a distribution function. The
sequence(θn) is asymptoticallyF -distributed if

|{16 n 6 M : θn 6 x}|
M

−→
M→∞

F(x)

for every continuity pointx of F (where|S| denotes the cardinality of a finite setS).

An equivalent condition is the following. Denote byδt the point mass att , and letµ be
the probability measure corresponding to the distributionF (namely,µ(A) = ∫ 1A dF(x)
for any Borel setA). Then(θn) is asymptoticallyF -distributed if

1

M
(δθ1 + δθ2 + · · · + δθM ) −→

M→∞
µ
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(the convergence being in the weak*-topology).
The notion of asymptotic distribution has a stronger version whereby, instead of

requiring only that initial pieces of the sequence behave in a certain way, we require this
to happen for any large finite portion of the sequence. This leads to the following.

Definition 2. In the set-up of definition 1,(θn) is asymptotically wellF -distributed if

|{L < n 6 M : θn 6 x}|
M − L −→

M−L→∞
F(x)

for every continuity pointx of F .

Recall that thedensityof a setA ⊆ N is given by

D(A) = lim
M→∞

|A ∩ [1,M]|
M

if the limits exists. If, moreover, the limit

BD(A) = lim
M−L→∞

|A ∩ (L,M]|
M − L

exists (in which case it is certainly the same as D(A)), then it is called theBanach density
of A (cf [9, p 72]).

The following lemma is routine.

Lemma 1.Let (θn)∞n=1 be a sequence of real numbers. SupposeN = ⋃r
j=1Aj , where the

union is disjoint. Let(θ (j)n )∞n=1 be the subsequence of(θn), consisting of those elementsθn
with n ∈ Aj , 16 j 6 r.

(1) If each (θ(j)n ) is asymptoticallyFj -distributed for some distribution functionsFj ,
1 6 j 6 r, and D(Aj ) = dj , 1 6 j 6 r, then (θn) is asymptoticallyF -distributed, where
F =∑r

j=1 djFj .

(2) If each(θ(j)n ) is asymptotically wellFj -distributed and BD(Aj ) = dj , then (θn) is
asymptotically wellF -distributed.

Obviously, a general sequence on the line does not have to be asymptotically distributed
according to some distribution function, but one would expect it of sufficiently ‘regular’
bounded sequences. In our case, one might expectχN to be distributed according to some
distribution function corresponding to a measure centred at about 1/C. However, this is not
the case. In fact, the measure in question is supported on a finite interval, and is a convex
combination of an absolutely continuous measure with decreasing density function on some
interval [0, a] and the point massδa at the right enda of that interval.

We have definedE(N) indirectly by means of the following.

Problem 1.For each non-negative integerN , find non-negative integersn0, n1, . . . , nK−1,
satisfyingn0+ n1+ · · · + nK−1 = N , for which

∑K−1
i=0

1
2Ci
· n2

i is minimal.
It turns out that this problem is intimately related to a second optimization problem.

Putwi = 1
2Ci

, 06 i 6 K − 1, and let1 denote the set of all positive odd multiples of the

numbers 1
2Ci

:

1 = {w0, 3w0, 5w0, . . . , w1, 3w1, 5w1, . . . , wK−1, 3wK−1, 5wK−1, . . .}.
Here we treat1 as a multiset, or a sequence, in the sense that if some elements appear in
this representation of1 more than once (which occurs iff some ratiowi/wj is a rational
number with odd numerator and denominator), then we consider1 as having several copies
of these numbers.
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Problem 2.For each non-negative integerN , minimize
∑N

m=1 δm, whereδ1, δ2, . . . , δN range
over all distinctN -tuples in1.

Note that, if an element appears several times in1, it is allowed to appear the same
number of times in the sum as well.

Let us demonstrate the equivalence of the two problems. Given the sum
∑K−1

i=0 wi · n2
i ,

we may use the equalitywi · n2
i = wi + 3wi + 5wi + · · · + (2ni − 1)wi to see that any

feasible value for the objective function of the first problem is a feasible value for the
objective function of the second problem as well. On the other hand, solving problem 2
is trivial. Namely, one minimizes the sum there simply by taking theN least elements of
the set1. In particular, for eachi, the multiples ofwi present in the optimal solution will
be all odd multipleswi, 3wi, 5wi, . . . up to some(2ni − 1)wi . Thus, the optimal solution
of problem 2 also yields the optimal solution of problem 1. We note in passing that this
discussion also shows that the minimum (for each of the problems) is obtained at a unique
point unless1 contains multiple elements. (However, we shall always refer tothe optimal
solution, even when there may be several.)

A simple consequence of the above is as follows.

Proposition 1.Let n = (ni)K−1
i=0 be the optimal solution of problem 1 for some value ofN .

Then the optimal solution of problem 1, withN + 1 instead ofN , is n′ = (n′i )K−1
i=0 , where

n′j = nj + 1 for some 06 j 6 K − 1 andn′i = ni for i 6= j .

Remark.It is convenient to comment here on the effect of a certain change in the original
problem would make. One may consider the energiesEi to bewini(ni+1) instead ofwin2

i .
This would change1 to be the set of all even multiples of thewi ’s. Obviously, this would
leave intact the equivalence of problems 1 and 2. One can check that this would have also
no effect on theorems 1 and 2 below.

To formulate our main result we need a few definitions and notations. Real numbers
θ1, θ2, . . . , θr are independent overQ if, considered as vectors in the vector spaceR over
the fieldQ, they are linearly independent. Equivalently, this is the case if the equality
m1θ1+m2θ2+· · ·+mrθr = 0 for integerm1, m2, . . . , mr impliesm1 = m2 = · · · = mr = 0.
Considering the actual physical system (a collection of metallic grains), it is reasonable
to assume that the capacitorsCi are random, so that generically they are independent
over Q. Without loss of generality we may rearrange theK capacitors such that
C0 = max06i6K−1Ci . It is also useful to divide all the capacitors by the largest one,
so that the scaled capacitorsci ≡ Ci/C0 with 1 = c0 > c1, c2 . . . , cK−1 are dimensionless.
Finally, sets = c0+ c1+ · · · + cK−1.

Now we formulate our main results.

Theorem 1.SupposeC0, C1, . . . , CK−1 are independent overQ. Then the sequence(χN)∞N=1
is asymptoticallyF -distributed, where the distributionF is given by either of the following
two representations:

F(x) =



0 x < 0

1− 1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− x

2wj

)
06 x < 2w0

1 2w0 6 x

(4)
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=


0 x < 0

1− 1

s

∑
S⊆{1,...,K−1}

(|S| + 1)
∏
i∈S
ci
∏
i /∈S
(1− ci) ·

(
1− x

2w0

)|S|
06 x < 2w0

1 2w0 6 x.

(5)

It is not immediately obvious from the formulae, butF has one discontinuity, namely
at the point 2w0. The reason is that, as the elements of1 are all odd multiples of the
wi ’s, and asw0 is the smallest of thewi ’s, it happens occasionally that there is no odd
multiple of w1, . . . , wK−1 between two consecutive multiples ofw0. The size of the atom
at 2w0 is 1

s
·∏K−1

i=1 (1− ci). This is easily explained intuitively. In fact, the ‘density’ of odd
multiples ofwi is ci times the same density for multiples ofw0. Hence, the ‘probability’
that an interval of the form [(2n − 1)w0, (2n + 1)w0) does not contain an odd multiple
of wi is 1− ci . Assuming that the ‘events’ of containing differentwi ’s are independent,
we conclude that the proportion of multiples ofw0 in 1 whose successors are also such is∏K−1
i=1 (1− ci). Since the proportion of multiples ofw0 in 1 is 1

s
, we arrive at the required

expression for the size of the atom.
Now we would like to study the asymptotic of the distances between consecutive

elements of1 as the number of capacitors grows. Obviously, as this happens, the distances
become smaller. More precisely, on average we have1

2wj
odd multiples of eachwj in each

unit interval, and hence we have there
∑K−1
j=0

1
2wj
= s

2w0
elements of1 altogether. Hence,

the average distance between consecutive elements is2w0
s

. To understand the asymptotics
of the gaps, it makes sense therefore to normalize them so as to have mean 1. Thus, we
multiply the distances by s2w0

, and ask about the asymptotic behaviour.

Theorem 2.Suppose the capacitancesC0, C1, . . . are chosen uniformly and independently
in [0, 1]. For eachK, let FK denote the distribution corresponding to the normalized
gaps when taking into account the firstK capacitors only. Then, with probability 1, the
distributionsFK converge to an Exp(1) distribution function.

Remark.As will be seen in the proof, we actually use much less to prove theorem 2 than
is required by the conditions of the theorem. Namely, we need the capacitancesCi to be
linearly independent overQ, and that they do not form a fast diminishing sequence.

It is worthwhile mentioning that this type of ‘Poissonian’ asymptotic behaviour of
consecutive gaps is typical. For example, this is the case for uniformly selected numbers in
[0, 1], and is conjectured to be the case in other interesting cases as well (see, for example,
[11, 12] and references therein).

In the course of the proof, we shall use the notion of uniform distribution modulo 1
and a few basic results relating to it. (The reader is referred to Kuipers and Niederreiter
[10] for more information.) A sequence(xn)∞n=1 of real numbers isuniformly distributed
modulo1 if

|{16 n 6 M : a 6 {xn} < b}|
M

−→
M→∞

b − a 06 a < b 6 1

where{t} is the fractional part of a real numbert . In terms of definition 1,(xn) is uniformly
distributed modulo 1 if and only if the sequence({xn}) of fractional parts isF -distributed,
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whereF is the distribution function of the uniform distribution on [0, 1]:

F(x) =


0 x < 0

x 06 x 6 1

1 x > 1.

The generalization of the notion of an asymptoticallyF -distributed sequence to that of
an asymptotically wellF -distributed sequence clearly carries over to our case. Instead of
requiring only that the dispersion of large initial pieces of the sequence becomes more and
more even, we require this to happen at arbitrary locations. This version is termedwell
distribution. Thus,(xn)∞n=1 is well distributed modulo1 if

|{L < n 6 M : a 6 {xn} < b}|
M − L −→

M−L→∞
b − a 06 a < b 6 1.

Both notions have a multidimensional analogue. A sequence(xn)
∞
n=1 in Rs is uniformly

distributed modulo 1 inRs if

|{16 n 6 N : a 6 {xn} < b}|
N

−→
N→∞

s∏
i=1

(bi − ai) 06 a < b 6 1

where inequalities between vectors inRs are to be understood component-wise,0 =
(0, 0, . . . ,0) ∈ Rs , a = (a1, a2, . . . , as), etc.

Perhaps the most basic example of a sequence which is uniformly distributed modulo 1
is (nα)∞n=1, whereα is an arbitrary irrational. In the multidimensional case, the sequence
(nα1, nα2, . . . , nαs) is uniformly distributed modulo 1 inRs if and only if the numbers
1, α1, α2, . . . , αs are linearly independent overQ. Moreover, in this case uniform
distribution implies well distribution (cf [10, example 1.6.1, exercise 1.6.14]).

Given a partitionN = ⋃l
j=1Aj and positive integersrj , j = 1, . . . , l, we define the

(rj )
l
j=1-inflation of the given partition as the partition ofN obtained by inflating each element

of each of the setsAj into rj elements. More precisely, we construct setsBj , j = 1, . . . , l,
as follows. For a positive integeri, let f (i) = j if i ∈ Aj . Given any positive integern,
let m be defined by

∑m−1
i=1 f (i) < m 6

∑m
i=1 f (i). Let n ∈ Bj if m ∈ Aj . The following

lemma is routine.

Lemma 2.In this set-up:
(1) if D(Aj ) = dj , 16 j 6 l, then D(Bj ) = rj dj∑l

i=1 ridi
;

(2) if BD(Aj ) = dj , 16 j 6 l, then BD(Bj ) = rj dj∑l
i=1 ridi

.

Proof of theorem 1.Between any two consecutive odd multiples ofw0, there is at most one
odd multiple of eachwj, 16 j 6 K − 1. In fact, one easily verifies that, given a positive
integerm, there is an odd multiple ofwj between(2m − 1)w0 and (2m + 1)w0, namely
there exists an integern with

(2m− 1)w0 6 (2n− 1)wj < (2m+ 1)w0 (6)

if and only if

mcj ∈
(

1− cj
2

,
1+ cj

2

]
(mod 1). (7)

Moreover, the relative position of(2n−1)wj within the interval [(2m−1)w0, (2m+1)w0) is
the same, but in the opposite direction, as that ofmcj (mod 1) within the interval( 1−cj

2 ,
1+cj

2 ],
that is

(2n− 1)wj = α · (2m− 1)w0+ (1− α) · (2m+ 1)w0 (0< α 6 1) (8)
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if and only if

mcj ≡ (1− α) · 1− cj
2
+ α · 1+ cj

2
(mod 1). (9)

Next we define a partition ofN as follows. Write the elements of1 in ascending order:
1 = {δ1 < δ2 < δ3 < · · ·}. Given n ∈ N, let S ⊆ {1, 2, . . . , K − 1} denote the set of all
thosej ’s such that the unique interval of the form [(2m−1)w0, (2m+1)w0) containingδn
contains an odd multiple ofwj . The set of all integersn giving rise in this way to any set
S is denoted byBS . Consider the partitionN = ⋃S⊆{1,2,...,K−1} BS . To prove the theorem
using lemma 1, we have to find the Banach densities of the setsBS and the asymptotic
distribution of the corresponding subsequences(χn)n∈BS of χn.

The partition ofN into sets of the formBS is obtained as an inflation of a somewhat
more straightforward partition. In fact, letS be any subset of{1, 2, . . . , K − 1}. Denote
by AS the set of those positive integersn for which the interval [(2n− 1)w0, (2n+ 1)w0)

contains odd multiples ofwj for j ∈ S and does not contain such multiples of the other
wj ’s. ThenN =⋃S⊆{1,...,K−1}AS is a partition, and its(|S|+1)S⊆{1,2,...,K−1}-inflation yields
the partitionN =⋃S⊆{1,2,...,K−1} BS .

In view of the equivalence of (6) and (7),AS is the set of thosen’s for which
ncj ∈ ( 1−cj

2 ,
1+cj

2 ] for j ∈ S and ncj /∈ ( 1−cj
2 ,

1+cj
2 ] for j /∈ S. By the conditions of

the theorem, the numbers 1, c1, . . . , cK−1 are linearly independent overQ, and hence the
sequencec = (nc1, nc2, . . . , ncK−1)

∞
n=1 is well distributed modulo 1 inRK−1. This means

that

D(AS) = BD(AS) =
∏
i∈S
ci
∏
i /∈S
(1− ci). (10)

Denote the right-hand side of (10) bypS . In view of the above and lemma 2, this implies

D(BS) = BD(BS) = (|S| + 1)pS∑
T⊆{1,2,...,K−1}(|T | + 1)pT

. (11)

The denominator on the right-hand side can be given a simpler form. In fact, let
Xi , i = 1, 2, . . . , K − 1, be independent random variables withXi ∼ B(1, ci), and
X =∑K−1

i=1 Xi . Then:∑
T⊆{1,2,...,K−1}

(|T | + 1)pT = E(X + 1) = 1+ c1+ · · · + cK−1 = s. (12)

Hence:

BD(BS) = (|S| + 1)pS
s

. (13)

Let S be an arbitrary fixed subset of{1, 2, . . . , K − 1}, sayS = {1, 2, . . . , l}, where
0 6 l 6 K − 1. If n ∈ AS , then there exist odd integersa1n, a2n, . . . , aln such that
ajnwj ∈ [(2n− 1)w0, (2n+ 1)w0). Put:

vn = (a1nw1, a2nw2, . . . , alnwl)− (2n− 1)w0 · (1, 1, . . . ,1) ∈ [0, 2w0)
l n ∈ AS.

By the equivalence of (8) and (9), the sequence(vn)n∈AS is well distributed modulo 2w0 in
Rl . Now eachvn gives rise tol+1 terms of(χn)n∈BS , as follows. Letv(1)n 6 v(2)n 6 · · · 6 v(l)n
be all coordinates ofvn in ascending order. Set:

un = (v(1)n , v(2)n − v(1)n , . . . , v(l)n − v(l−1)
n , 2w0− v(l)n ) n ∈ AS.

The sequence(χn)n∈BS consists of all coordinates of all vectorsun. Now we use the
fact that if X1, X2, . . . , Xr are independent random variables, distributed U(0, h), and
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X(1), X(2), . . . , X(r) are the corresponding order statistics, then each of the random variables
X(1), X(2) − X(1), . . . , X(r) − X(r−1), h − X(r) has the distribution function defined by
G(x) = 1 − (x/h)r for 0 6 x 6 h (which follows as a special case from [8, p 42,
exercise 23]). Consequently, for each 16 j 6 l + 1, the sequence given by the
j th coordinate of all vectorsun, n ∈ AS , is asymptotically wellG1-distributed, where
G1(x) = 1− (x/2w0)

l for 0 6 x 6 2w0. Hence, the sequence(χn)n∈BS is asymptotically
well G1-distributed. Combined with (13), it proves (5).

We shall indicate only briefly the proof of (4), which is quite simpler. This time, we
split (χn) into a union of subsequences(χ(i)n ), 06 i 6 K−1, by puttingχn in the sequence
χ(i)n if δn is a multiple ofwi . Clearly, the proportion of terms of(χn) belonging to(χ(i)n )
is ci/s. Next, consider the minimal odd multiples of allwj ’s which are larger thanδn. The
minimum of theseK numbers isδn+1. For eachj 6= i, the distance fromδn to the minimal
odd multiple ofwj following δn is ‘distributed’ U(0, 2wj). (For i = 0 it is also possible that
the next term will be again a multiple ofw0.) The linear independence of theCi ’s overQ
implies that theseK − 1 distances are (statistically) independent, so that their minimum is
distributed according to the functionG2(x) = 1−∏K−1

j=0
j 6=i
(1− x

2wj
) on the interval [0, 2w0).

These considerations can be formalized to prove (4). This completes the proof. �

Remark.It is possible to shorten the proof by proving directly the equality of the right-hand
sides of (4) and (5). In fact, it is easy to integrate both forms with respect tox; the equality
of the resulting expressions follows easily from the binomial theorem. We have chosen the
long way, as it is more instructive.

Proof of theorem 2.The distributionFK is obtained from that in theorem 1 by stretching
by the constant factors2w0

. Hence:

FK(x) =



0 x < 0

1− 1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− cjx

s

)
06 x < s

1 s 6 x.

(14)

Note that some of the values appearing on the right-hand side depend onK implicitly.
Namely, sincew0 is assumed in theorem 1 to be the leastwi , each time aCi is selected
which is larger than all the heretofore selectedCj ’s, we have to rearrange theCj ’s, thus
changingw0 and thecj ’s. We have to show that

FK(x) −→
K→∞

1− e−x x > 0. (15)

Indeed, fixx > 0. Since

s = c0+ c1+ · · · + cK−1 = C0+ C1+ · · · + CK−1

C0
> C0+ C1+ · · · + CK−1 (16)

and theCi ’s are independent and uniformly distributed in [0, 1], we have

s
a.s.−→

K→∞
∞. (17)

Hence, with probability 1, for sufficiently largeK we have

FK(x) = 1− 1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− x

2wj

)
. (18)
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Thus, to prove (15) we need to show that

1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− cjx

s

)
a.s.−→

K→∞
e−x x > 0. (19)

Now, on the one hand, using the inequality

1− t 6 e−t t ∈ R
we have

K−1∏
j=0
j 6=i

(
1− cjx

s

)
6 e
−x∑K−1

j=0
j 6=i

cj

s 6 e−x+x/s i = 0, 1, . . . , K − 1

and therefore

1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− cjx

s

)
6 1

s

K−1∑
i=0

cie
−x+x/s = e−x+x/s

a.s.−→
K→∞

e−x. (20)

On the other hand, ast → 0 we have

e−(t+t
2) = 1− (t + t2)+ (t + t

2)2

2
+O(t3) = 1− t − t

2

2
+O(t3)

so that for allt in some sufficiently small neighbourhood of 0

e−(t+t
2) 6 1− t.

Consequently:

K−1∏
j=0
j 6=i

(
1− cjx

s

)
> e
−x∑K−1

j=0
j 6=i

cj

s
−x2∑K−1

j=0
j 6=i

c2
j

s2 > e−x−Kx
2/s2
. (21)

Obviously, with probability 1,s grows linearly withK, namely for all sufficiently largeK
we haves > aK for a suitably chosena > 0. (In fact, anya < 1

2 will do.) By (21):

K−1∏
j=0
j 6=i

(
1− cjx

s

)
> e−x−Kx

2/s2 a.s.−→
K→∞

e−x. (22)

From (20) and (22) it follows that

1

s

K−1∑
i=0

ci

K−1∏
j=0
j 6=i

(
1− cjx

s

)
a.s.−→

K→∞
e−x (23)

which completes the proof. �
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