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Abstract. Motivated by recent experiments on large quantum dots, we consider the energy
spectrum in a system consisting Mf particles distributed amon§ < N independent subsys-
tems, such that the energy of each subsystem is a quadratic function of the number of particles
residing on it. On a large scale, the ground-state enéxgy) of such a system grows quadrat-
ically with N, but in general there is no simple relation such&sV) = aN + bN2. The
deviation of E(N) from exact quadratic behaviour implies that its second difference (the inverse
compressibility)xy = E(N + 1) —2E(N) + E(N —1) is a fluctuating quantity. Regarding the
numbersyy as values assumed by a certain random varigbl@e obtain a closed-form expres-

sion for its distributionF (x). Its main feature is that the corresponding denglty) = df,—;x)

has a maximum at the poipt= 0. AsK — oo the density is Poissonian, nameB(x) — e X.

1. Motivation

Statistics of spectra is an efficient tool for elucidating properties of various physical systems.
So far, most of the effort has been focused on the study of energy levels of a system with
a fixed number of particles. In this context, one of the central earlier results is that the
spectral statistics of many-body systems such as complex nuclei agree with the predictions
of random matrix theory [1, 2]. On the other extreme, it was found that level statistics of a
single particle in a chaotic or disordered system also obeys a Wigner—Dyson statistics [3, 4].
Recently, experiments have been designed to obtain information on the statistics of the
addition spectraof electrons in quantum dots [5]. The pertinent energy lev&l®’) are
the ground-state energies of a system consistiny @lectrons residing on a quantum dot,
which is coupled capacitively to its environment.
Let us single out two properties of the addition spectra of quantum dots. The first one
is that, on a large scale, the enerflyN) grows quadratically withv, while the second
one is a consequence of charge quantization, namely, there is, in general, no simple relation
such asE(N) = aN + bN?. In this context, an appropriate quantity whose statistics is of
interest is then the inverse compressibility,

xyn=EN +1)—2E(N)+ E(N —1). 1)

It is the deviation ofF (N) from exact quadratic behaviour which makes its second difference
xny hon-constant. Indeed, in a recent experiment on large quantum dots [6] it was found
that the inverse compressibility vanishes for numerous values of electron ninber
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In this work we study the statistics of the addition spectrum of a simple physical
system with the two basic properties mentioned above. One example of such a system is
motivated by considering the electrostatic energy of large quantum dots (although it should
be mentioned that the model is too simple to describe the actual physics). To be specific,
we have in mind a system & metallic grains such that the number of electrons on'the
grainisn; (i =0,1,2,..., K —1) and their total number i&. The electrostatic energy of
the pertinent system is a bilinear form in the numbersvith a K x K matrix w = %C*l.

HereC is a positive-definite symmetric matrix of capacitance and inductance coefficients. If
the metallic grains are very far apart, the mattixs nearly diagonal. Thus, we concentrate
on the special cas€ = diag|C;], for which the energy of the system is given by

) K-1 1 5 ) K-1
E(N) = min ; T (subject to; n; = N). 2)
The minimum in (2) is taken over all possible partitiogsof N.

Another example is the energy of a system composedKofifferent harmonic
oscillators, among which one distributés spinless fermions. If there are fermions
on oscillatori (whose frequency i), then the energy of this oscillator (up to a constant)
is E; = hw;n; (n; + 1), and hence the ground-state energy of the system is

K-1 K-1
E(N) = min Z E; (subject to Z n; = N). 3)
i=0 i=0
We will concentrate on the first example, which is borrowed from the electrostatics of
guantum dots (2), and refer to the constafitsas capacitors. Some remarks pertaining to
the second example (the system of oscillators (3)) are also presented.

Regarding the numbergy of (1) as values assumed by a certain random variable, the
distribution of this random variable is the main focus of this work, which culminates in
theorem 1, where we find a closed-form expression for the distribution.

The problem of elucidating the (addition) spectral statistics afraany-bodysystem,
consisting of several independent subsystems (whose dependeiit®rof:; is known),
looks deceptively simple. As will be evident shortly, this is not the case, and finding the
distribution in question is quite a non-trivial task. Note that, even farirale-particle
systemcomposed of several independent subsystems (e.g. a system of a particle in several
boxes), the derivation of level statistics requires a large degree of mathematical effort [7].
The rest of the paper is therefore devoted to a rigorous derivation of our main results.

2. Formalism

Definition 1. Let (6,)32 ; be a sequence of real numbers a@ne distribution function. The
sequenced,) is asymptoticallyF -distributed if
1<n<M:6, <
(1< n e
M M— o0
for every continuity pointc of F (where|S| denotes the cardinality of a finite s&}.

An equivalent condition is the following. Denote Bythe point mass at, and letu be
the probability measure corresponding to the distributfoinamely, u(A) = [ 14 dF (x)
for any Borel setd). Then(6,) is asymptoticallyF-distributed if

1
M(591+592+'~+59M)Mj;ﬂ
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(the convergence being in the weak*-topology).

The notion of asymptotic distribution has a stronger version whereby, instead of
requiring only that initial pieces of the sequence behave in a certain way, we require this
to happen for any large finite portion of the sequence. This leads to the following.
Definition 2.In the set-up of definition 1¢6,) is asymptotically wellF-distributed if

HL<n<M:0, <x}|
—
M — L M—L—o0
for every continuity pointc of F.

F(x)

Recall that thedensityof a setA C N is given by

AN[L, M
DA) = fim AN MI
M—o0 M

if the limits exists. If, moreover, the limit

AN(L,M
BD(A) = lim lAnd, Ml
M—-L—o0 M — L
exists (in which case it is certainly the same asiD), then it is called théBanach density
of A (cf[9,p 72]).
The following lemma is routine.

Lemma 1Let (6,);2; be a sequence of real numbers. Suppiise (J;_; 4;, where the

union is disjoint. Let(6\”)>; be the subsequence @), consisting of those elements
withn e A;, 1< j<r.

2) If each (6") is asymptotically F;-distributed for some distribution functions;,
1<j<r,and D4)) =d;, 1 < j < r, then(d,) is asymptoticallyF-distributed, where
F=37_1dF;.

(2) If each(6)) is asymptotically wellF;-distributed and BDA;) = d;, then (6,) is
asymptotically wellF-distributed.

Obviously, a general sequence on the line does not have to be asymptotically distributed
according to some distribution function, but one would expect it of sufficiently ‘regular’
bounded sequences. In our case, one might expedb be distributed according to some
distribution function corresponding to a measure centred at ab@lit However, this is not
the case. In fact, the measure in question is supported on a finite interval, and is a convex
combination of an absolutely continuous measure with decreasing density function on some
interval [0, ] and the point mas§, at the right end: of that interval.

We have definedz (N) indirectly by means of the following.

Problem 1.For each non-negative integéf, find non-negative integensg, n1, ..., ng_1,
satisfyingno +ny + - - +ng_1 = N, for which %' oL n? is minimal.
It turns out that this problem is intimately related to a second optimization problem.

Putw; = % 0<i < K —1, and letA denote the set of all positive odd multiples of the
numbers;L-:

A= {wo, Su)o, 5w0, s, Wa, 3w1, 5w1, ooy, WK1, 3w;<_1, 5w,(_1, .. }

Here we treatA as a multiset, or a sequence, in the sense that if some elements appear in
this representation oA more than once (which occurs iff some raiig/w; is a rational
number with odd numerator and denominator), then we congides having several copies

of these numbers.
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Problem 2.For each non-negative integh, minimizezf,\f=1 3m, Wheresy, 85, ..., 8y range
over all distinctN-tuples inA.

Note that, if an element appears several timedijnit is allowed to appear the same
number of times in the sum as well.

Let us demonstrate the equivalence of the two problems. Given theysfint w; - n2,
we may use the equality; nl2 = w; + 3w; +5w; +--- + (2n; — Dw; to see that any
feasible value for the objective function of the first problem is a feasible value for the
objective function of the second problem as well. On the other hand, solving problem 2
is trivial. Namely, one minimizes the sum there simply by taking théeast elements of
the setA. In particular, for eachi, the multiples ofw; present in the optimal solution will
be all odd multiplesw;, 3w;, 5w;, ... up to some(2n; — D)w;. Thus, the optimal solution
of problem 2 also yields the optimal solution of problem 1. We note in passing that this
discussion also shows that the minimum (for each of the problems) is obtained at a unique
point unlessA contains multiple elements. (However, we shall always reféhémptimal
solution, even when there may be several.)

A simple consequence of the above is as follows.

Proposition 1.Let n = (n,-)i’igl be the optimal solution of problem 1 for some valueNof
Then the optimal solution of problem 1, with + 1 instead ofN, is n' = (n))X", where

n; =n; + 1 for some 0< j < K — 1 andn; = n; fori # j.

Remark.It is convenient to comment here on the effect of a certain change in the original
problem would make. One may consider the energie® bew;n; (n; + 1) instead ofw,-nl?.

This would change\ to be the set of all even multiples of the’s. Obviously, this would

leave intact the equivalence of problems 1 and 2. One can check that this would have also
no effect on theorems 1 and 2 below.

To formulate our main result we need a few definitions and notations. Real numbers
01, 6,, ...,0, are independent ovep if, considered as vectors in the vector spa&ever
the field Q, they are linearly independent. Equivalently, this is the case if the equality
m161+mob2+- - -+m,0, = 0O for integermy, my, ..., m, impliesmy =mp=---=m, =0.
Considering the actual physical system (a collection of metallic grains), it is reasonable
to assume that the capacito€s are random, so that generically they are independent
over Q. Without loss of generality we may rearrange tlke capacitors such that
Co = maxgi<k-1C;. It is also useful to divide all the capacitors by the largest one,
so that the scaled capacitats= C;/Co with 1 = ¢g > ¢1,¢2..., cx_1 are dimensionless.
Finally, sets = co+c1+ -+ cx_1-

Now we formulate our main results.

Theorem 1.Suppos&y, Cy, ..., Cx_1 are independent ovéd. Then the sequendg )3y,
is asymptoticallyF-distributed, where the distributiof is given by either of the following
two representations:

0 x <0

K-1 K-1 x
F(x) = 1- . ¢ (1—f) 0<x < 2w 4)
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0 x <0
1 x\*
={1-= > Ws+n]]a]Ja-e (1—-) 0< x < 2wg
S scitl k-1 ies  ig¢S 2wo
1 2w < x

©)

It is not immediately obvious from the formulae, bEthas one discontinuity, namely
at the point 2vg. The reason is that, as the elementsfofare all odd multiples of the
w;'s, and aswyg is the smallest of thay;’s, it happens occasionally that there is no odd
multiple of wy, ..., wg_1 between two consecutive multiples @f. The size of the atom
at 2wg is % . ]_[f:_ll(l— ¢;). This is easily explained intuitively. In fact, the ‘density’ of odd
multiples of w; is ¢; times the same density for multiples of. Hence, the ‘probability’
that an interval of the form(gn — 1)wo, (2n + 1)wp) does not contain an odd multiple
of w; is 1— ¢;. Assuming that the ‘events’ of containing differemf’s are independent,
we conclude that the proportion of multiples w§ in A whose successors are also such is
]_[[.K:‘ll(l— ¢;). Since the proportion of multiples afy in A is % we arrive at the required
expression for the size of the atom.

Now we would like to study the asymptotic of the distances between consecutive
elements ofA as the number of capacitors grows. Obviously, as this happens, the distances
become smaller. More precisely, on average we %yeadd multiples of eachw; in each

unit interval, and hence we have theE e 2w = »— elements ofA altogether. Hence,

the average distance between consecutive eIemerftt%'; isTo understand the asymptotics
of the gaps, it makes sense therefore to normallze them so as to have mean 1. Thus, we
multiply the distances by, -, and ask about the asymptotic behaviour.

Theorem 2.Suppose the capacitanc€s, Cy, ... are chosen uniformly and independently
in [0,1]. For eachK, let Fx denote the distribution corresponding to the normalized
gaps when taking into account the fir&t capacitors only. Then, with probability 1, the
distributions Fx converge to an Exg) distribution function.

Remark.As will be seen in the proof, we actually use much less to prove theorem 2 than
is required by the conditions of the theorem. Namely, we need the capacit@ntede
linearly independent ove®, and that they do not form a fast diminishing sequence.

It is worthwhile mentioning that this type of ‘Poissonian’ asymptotic behaviour of
consecutive gaps is typical. For example, this is the case for uniformly selected numbers in
[0, 1], and is conjectured to be the case in other interesting cases as well (see, for example,
[11, 12] and references therein).

In the course of the proof, we shall use the notion of uniform distribution modulo 1
and a few basic results relating to it. (The reader is referred to Kuipers and Niederreiter
[10] for more information.) A sequenceg,)S2, of real numbers isiniformly distributed
modulo 1 if

1<n<M:a<ix)<b
I{ n a < {x,} < }|—>b—a O0<a<b«l1l
M M—o00

where{t} is the fractional part of a real numberIn terms of definition 1(x,,) is uniformly
distributed modulo 1 if and only if the sequende,}) of fractional parts isF-distributed,
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where F is the distribution function of the uniform distribution on, [0:

0 x <0
F(x)=1x 0<x<1
1 x > 1.

The generalization of the notion of an asymptoticallydistributed sequence to that of

an asymptotically wellF-distributed sequence clearly carries over to our case. Instead of
requiring only that the dispersion of large initial pieces of the sequence becomes more and
more even, we require this to happen at arbitrary locations. This version is teveled
distribution Thus, (x,)32 ; is well distributed modulal if

HL <n < M:a<{x,} <b}|
—>
M—L M—L—o0
Both notions have a multidimensional analogue. A sequémge?, in R*® is uniformly
distributed modulo 1 irR* if

(1< n<N:a< {z) < bl _>li[(b-—a-)

N N—>ooi:l

where inequalities between vectors Rf are to be understood component-wiske,=
(0,0,...,00 e R*, a = (ay, ay, ...,a), etc.

Perhaps the most basic example of a sequence which is uniformly distributed modulo 1
is (na); 1, wherea is an arbitrary irrational. In the multidimensional case, the sequence
(nayg, nay, ..., nay) is uniformly distributed modulo 1 iRR* if and only if the humbers
1, 1,00, ...,a, are linearly independent ove®). Moreover, in this case uniform
distribution implies well distribution (cf [10, example 1.6.1, exercise 1.6.14]).

Given a partitionN = Uj~=1 A; and positive integers;, j = 1,...,/, we define the
(rj)ﬁzl—inflation of the given patrtition as the partition df obtained by inflating each element
of each of the setd; into r; elements. More precisely, we construct sBfsj =1,...,1,
as follows. For a positive integéy let f(i) = j if i € A;. Given any positive integet,
let m be defined byy """ f(i) <m < Y7, f(i). Letn € B; if m € A;. The following
lemma is routine.

b—a O<a<b<l

O0<a<b«l

Lemma 2.In this set-up:
(1) if D(A)) =d;, 1< j <1, then OB)) = z—d

i=1Tidi

(2) if BD(4;) =d;, 1< j <, then BOB;) = _fodf

i ridi
Proof of theorem 1Between any two consecutive odd multiplesugf, there is at most one
odd multiple of eachw;, 1< j < K — 1. In fact, one easily verifies that, given a positive
integerm, there is an odd multiple oy; between(2m — L)wo and (2m + 1)wg, namely
there exists an integer with

@2m — Dwo < (2n — Dw; < 2m + Dwo (6)
if and only if

l1—¢ 1l+¢
mcj € ( 5 j,TJ] (mod J). )

Moreover, the relative position @2n —1)w; within the interval [2m —Dwo, (2m+1)wo) is
the same, but in the opposite direction, as thatof(mod 1) within the interval( l;Cf , 12“’],
that is

(2n —Dw; = a - (2m — Dwo + (L — ) - (2m + Dwo O<a<l (8)
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if and only if
—¢
2
Next we define a partition df as follows. Write the elements & in ascending order:
A=1{8; <8 <d3<--+}. Givenn e N, letS C {1,2,..., K — 1} denote the set of all
those;’s such that the unique interval of the forri2fz — 1)wo, (2m + 1)wg) containings,
contains an odd multiple ab;. The set of all integers giving rise in this way to any set
S is denoted byBs. Consider the partitiotN = (Jgc(;, x5 Bs- To prove the theorem
using lemma 1, we have to find the Banach densities of the Betand the asymptotic
distribution of the corresponding subsequenGgs,cs, of x,.
The partition ofN into sets of the formBy is obtained as an inflation of a somewhat
more straightforward partition. In fact, l&t be any subset ofl, 2,..., K — 1}. Denote
by Ag the set of those positive integetsfor which the interval (2n — 1)wq, (21 + L)wy)
contains odd multiples ofv; for j € S and does not contain such multiples of the other

mcjz(l—oz)-l Ot~1_;Cj(m0d:D- ©)

the partitionN = (12 1 Bs-
In view of the equivalence of (6) and (745 is the set of those:'s for which

ne; € (52, 249 for j € S andne; ¢ (52, 24 for j ¢ S. By the conditions of
the theorem, the numbers &, ..., cx_1 are linearly independent ovép, and hence the
sequence = (ncy, ney, ..., ncg—1)0o , is well distributed modulo 1 iRX-1. This means
that
D(As) =BD(Ag) = [[ai [ [ —c. (10)
ieS ¢S
Denote the right-hand side of (10) . In view of the above and lemma 2, this implies
(IS1+Dps

D(Bs) = BD(B) = (11)

Yorcp. k-n(TI+Dpr
The denominator on the right-hand side can be given a simpler form. In fact, let
X, i = 1,2,...,K — 1, be independent random variables wixh ~ B(1,¢;), and

X = Y5 X, Then:

> (Tl+Dpr=EX+D=1+ci+ - +cxg1=s. (12)
TC(12,..,K—1}
Hence:
Sl+1
BD(Bs) = (SI+Dps (13)
S
Let S be an arbitrary fixed subset ¢1,2,..., K — 1}, sayS = {1,2,...,1}, where
0< 1< K-1 Ifn e Ag then there exist odd integets,, az,, ..., a;, such that
ajnw; € [(2n — Dwo, (2n + Dwg). Put:
Uy = (amaws, agwo, . . ., amw;) — (2n — Dwo - (L, 1, ..., 1) € [0, 2wp)’ ne As.

By the equivalence of (8) and (9), the sequetgg, <4, is well distributed modulo 2 in
R’. Now eachw, gives rise td+1 terms of(x,)nes;, as follows. Let™® < v@ < ... < v®
be all coordinates of, in ascending order. Set:

U, = (v(l) @ — v,(ll), e, v,gl) — v,ﬁl’l), 2wg — v,(l’)) neAs.

n ’>"n

The sequencéy,).cp, consists of all coordinates of all vectors. Now we use the
fact that if X;, X5, ..., X, are independent random variables, distribute®, ), and
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x® x®@ . X are the corresponding order statistics, then each of the random variables
XD x@ _ x@ x0O _ x=D p _ X" has the distribution function defined by
Gx) = 1— (x/h)" for 0 < x < h (which follows as a special case from [8,p 42,
exercise 23]). Consequently, for each<d j < [ + 1, the sequence given by the
jth coordinate of all vectors,, n € Ag, is asymptotically wellG;-distributed, where
G1(x) = 1 — (x/2wp)’ for 0 < x < 2wp. Hence, the sequendg, ) ez, iS asymptotically

well G;-distributed. Combined with (13), it proves (5).

We shall indicate only briefly the proof of (4), which is quite simpler. This time, we
split (x,) into a union of subsequencég”), 0 <i < K —1, by puttingy, in the sequence
XV if 8, is a multiple ofw;. Clearly, the proportion of terms afy,) belonging to(x,")
is ¢;/s. Next, consider the minimal odd multiples of al}’s which are larger thag,. The
minimum of theseK numbers i, ;. For eachj # i, the distance frond, to the minimal
odd multiple ofw; following 8, is ‘distributed’ W0, 2w;). (Fori = O it is also possible that
the next term will be again a multiple afg.) The linear independence of tlig’s over Q
implies that these&X — 1 distances are (statistically) independent, so that their minimum is
distributed according to the functiofi,(x) = 1 — ]_[[j;&(l— sz,) on the interval [02wg).

J#i
These considerations can be formalized to prove (4). This completes the proof. [

Remark.It is possible to shorten the proof by proving directly the equality of the right-hand
sides of (4) and (5). In fact, it is easy to integrate both forms with respegtttee equality

of the resulting expressions follows easily from the binomial theorem. We have chosen the
long way, as it is more instructive.

Proof of theorem 2The distribution Fx is obtained from that in theorem 1 by stretching
by the constant factoglj—@. Hence:

0 x <0
1 k-1 k-1 ¢jx
Few =]t all(t-7)  os<ws<s (14)
i=0 j=0
J#L
1 s < X.

Note that some of the values appearing on the right-hand side depeid iowplicitly.
Namely, sincewg is assumed in theorem 1 to be the least each time aC; is selected
which is larger than all the heretofore selectgéds, we have to rearrange thg;’s, thus
changingwg and thec;’s. We have to show that

Fi(x) I(::ol —e” x = 0. (15)

Indeed, fixx > 0. Since
Co+C1+ -+ Ck_1

s=cot+ec1+--+cg_1= C >Co+Ci1+---+Ck_1 (16)
0
and theC;’s are independent and uniformly distributed in 10, we have
5 =% 0. (17)
K—o00

Hence, with probability 1, for sufficiently larg& we have

1K71 K-1 X
F[(()C):l—;%@ﬂ)(l-a) (18)

J#
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Thus, to prove (15) we need to show that

—_ Ci —_— X =2 U,
S0 j=o § /K=o
J#

Now, on the one hand, using the inequality
1-r<e”’ teR

we have

- A i=01...,K—-1

N

3 e
K 1( cjx) e—XZ',(:o +

and therefore

1K71 K-1 Cix lel as
= ¢ ( _ ) <= Cie—)H—x/s — e—x—&-x/s S @ ¥ (20)
S0 j=o § 520 Koo

J#

On the other hand, as— 0 we have

(t +1%)2
2
so that for allz in some sulfficiently small neighbourhood of 0

t2
gt 1 _ (t+1%) + +0(})=1—1— > +0(%)

2
e ) <1 -1

Consequently:
2
K-1 K-1¢ _ 25K-19
CiX 7le':0 e Z":O 32 272
||(—’—)>e i > @K (21)
; N
Jj=0
i

Obviously, with probability 15 grows linearly withK, namely for all sufficiently large&k
we haves > aK for a suitably chosem > 0. (In fact, anya < % will do.) By (21):

K-1
[T(a-") z e 2 e (22)
; N K—oo
j=0
J#i
From (20) and (22) it follows that
LN TT(-2) 22 e (23)
§ = ! c s K—oo
i=0 j=0
J#i
which completes the proof. O
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